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Progress Report of DoD Grant # W81XWH-04-1-0120

Introduction

There are two NF-xB activation pathways. The first pathway, the classical NF-xB activation pathway, is
normally triggered in response to microbial and viral infections and exposure to proinflammatory cytokines
which activate the three subunit IKK complex leading to phosphorylation-induced degradation of IkBs. This
pathway depends mainly on the IKKf catalytic subunit. The other pathway, the alternative pathway, leads to
activation of p52:RelB dimers by inducing processing of the NF-kB2/p100 precursor protein that binds RelB
in the cytoplasm. This pathway is triggered by certain members of the tumor necrosis factor (TNF) cytokine
family through selective activation of IKKo homodimers by the upstream kinase NIK.

There is considerable evidence that the two IKK/NF-xB signaling pathways are involved in
carcinogenesis, cancer progression, metastasis and drug resistance. Although certain viral proteins, cancer-
associated chromosomal translocations, and mutations can lead to constitutive activation of NF-xB in cancer
progenitor cells, the most common mechanism leading to NF-xB activation during tumorigenesis depends on
autocrine and paracrine production of proinflammatory cytokines. Persistent activation of NF-xB can lead to
increased production of tumor growth factors by components of the tumor stroma as well as to upregulation
of anti-apoptotic genes within the cancer cell itself. This process was recently demonstrated to occur during
two different mouse models of inflammation-associated cancer leading to development of colorectal cancer
and hepatocellular carcinoma. We also provided evidence for a role of NF-xB in inflammation-driven
metastatic growth. In that model, as well, IKK-driven NF-xB activation is responsible for production of
growth and survival factors by stromal components (macrophages) and upregulation of anti-apoptotic genes
within the cancer cell.

Prostate cancer (CaP) is one of the most common cancers in men and the second leading cause of
cancer-related deaths among men in the United States. It was shown that NF-xB transcription factors can
directly interact with several members of the nuclear receptor family including androgen receptor (AR) itself.
Thus, NF-xB may function as a co-activator for AR causing it to be active independently of androgen
binding. In this case, prostate epithelial cells with high NF-xB activity are rendered resistant to androgen
withdrawal. However, NF-xB can also trans-repress ligand-bound AR or repress the AR gene itself. Most
importantly, NF-xB activity itself is repressed by androgen treatment via AR-mediated trans-repression or
other mechanisms. In this case, NF-xB activity may increase in response to androgen withdrawal. Once
activated, NF-xB can stimulate production of various cytokines by prostate epithelial cells, CaP and stromal
components. Specifically, IL-6, a well-known autocrine and paracrine growth factor for Al CaP cells, is
encoded by a typical NF-«xB target gene. The dependence of IL-6 expression on NF-kB was demonstrated in
the prostate epithelium. Importantly, the human AD CaP cell line, LNCaP, was shown to assume a
neuroendocrine (NE) phenotype in response to IL-6 exposure. Although NE cancers of the prostate are rare,
foci with NE-like features can be observed in nearly all prostate adenocarcinomas and extensive NE
differentiation is generally considered to be of poor prognostic value. Indeed, NE differentiation appears
more frequently in hormone-refractory cancer. Inhibition of IL-6 activity induces the regression of Al human
CaP xenografts in mice. Thus, NF-xB inhibition should result in a similar effect by inhibiting IL-6
expression. Studies performed on various CaP cell lines reveal that Al cells often display constitutive NF-xB
activity. Furthermore, constitutively activated NF-xB in three different human CaP cell lines was linked to
overexpression of IKK subunits, and inhibition of NF-xB activity in these cells through expression of a non-
degradable super-repressor mutant of IkBa resulted in either spontaneous apoptosis or increased sensitivity
to TNFo.

SPECIFIC AIMS

e Construct mice with a conditionally activated Ikkf allele and use them to determine wether
constitutive NF-xB activation in prostrate epithelial cells promotes prostate cancer.

Page 4



e Construct mice with a specific deletion of IkkP in prostate epithelial cells and examine
whether this deletion, as well as the inactivation of IKKd, inhibits prostate carcinogenesis in
the TRAMP model.

e Use various strategies to inhibit IKK activity and test them for their ability to inhibit
proliferation and induce apoptosis in prostate cancer cell lines of human origin.

Key Research Accomplishments
1. Examine whether inactivation of IKKa inhibits prostate carcinogenesis in the TRAMP model.

To investigate the role of the IKKo subunit, which may offer a more attractive target for drug
development than IKK as it is not required for innate immune responses, TRAMP mice were crossed with
Tkkof** mice which express a form of IKKa that can not be activated because the two serines in its
activation loop, which are phosphorylated by the upstream activating kinase NIK, were replaced with
alanines. The resultant Ikko/“*4/TRAMP mice were monitored for tumor development and found to exhibit
fewer metastases (including metastasis to lymph nodes and other organs) and survive considerably longer
than WI/TRAMP mice (Fig. 1 and Table 1). The CaP in Ikko®**/TRAMP mice exhibit reduced cell
proliferation (Fig. 2). However, there are no differences in size and weight of the prostate glands between
12-week-old Ikko*4/TRAMP and WT/TRAMP mice, and both strains developed prostate adenocarcinomas,
suggesting that IKKa kinase activity is required for CaP progression but not for normal prostate development
and early tumorigenesis (Fig. 2).

We also found that the expression of some cyclins (cyclin A, cyclin B) was decreased in
Tkko***/TRAMP tumors as compared with WI/TRAMP tumors (Fig. 3). A metastasis suppressor Maspin
was down-regulated in wt tumors but not in Jkke/*** tumors (Fig. 4), suggesting that IKKa. activation might
repress Maspin expression which was supported by in vitro Maspin-luciferase reporter experiments (Fig. 5).

2. Construct mice with a specific deletion of IkkSin prostate epithelial cells and examine whether this
deletion inhibits prostate carcinogenesis in the TRAMP model, and whether IKKp play a role in the
transition from AD CaP to AI CaP

To test the role of the IKK[ subunit in CaP development, we constructed a mouse strain that contains a
prostate epithelium-specific deletion of the gene coding for the IKK catalytic subunit. In these experiments
we took advantage of the Ikk”" mouse strain, , which harbors a conditional loss-of-function “ floxed” Ikkf3
allele. To delete IKKP in prostate epithelial cells we crossed Ifk»'c/.')‘p F mice to PB-CRE4 transgenic mice,
which express CRE recombinase in prostate epithelial cells. This yielded an Ikk”* PB-CRE4 heterozygote
strain, which after intercrossing generated a homozygote IkkS”"PB-CRE4 mouse. We examined the
efficiency of IKKP deletion in the prostate and in purified prostate epithelial cells from 10-12 week old male
Hc}’q_’i‘c ’FIPB-CRE4 mice by polymerase chain reaction (PCR) and immunoblotting and found efficient deletion
of the Ikk" allele and absence of IKKP protein in purified ventral and dorsolateral prostate gland epithelial
cells from Ikkﬁ |PB-CRE4 mice (Fig. 6). No differences in the size of the prostate gland and its histological
composition between Hdc,tﬁ‘r # and Ikkﬂ"' IPB-CRE4 mice were observed. Thus, IKKB is not required for
normal prostate development and maintenance. Since effective and prostate-specific deletion of IKKp has
been confirmed, we crossed recombinant Ikk”" PB-CRE4 mice as well as Ikkff”" mice with the TRAMP
transgenic mouse to generate Ikk”" PB-CRE4-TRAMP and IkkS”F-TRAMP mice. Cohorts of 15 male mice
of the appropriate genotypes (Ikk"" PB-CRE4-TRAMP and IkkF-TRAMP) are currently being monitored
for external signs of prostate cancer formation. Mice that will exhibit large palpable tumors will be sacrificed
and both primary and metastatic tumor tissues will be collected for primary cell culture, histological and
biochemical analyses.

To examine whether IKK/NF-xB is activated during the evolution of AI CaP, the androgen-dependent
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(AD) human CaP cell line LNCaP was inoculated subcutaneously into immunocompromised SCID mice.
When tumor mass reached 1 cm”®, one half of the tumor-bearing mouse cohort was sacrificed and AD tumor
tissue was collected. The other half of the mouse cohort was castrated. Two months later when the tumors in
the castrated mice re-grew, mice were sacrificed and tumor tissues were collected to yield Al tumors. Protein
lysates derived from AD and Al tumors were assayed for NF-xB DNA binding activity by an electrophoretic
mobility shift assay (EMSA) and for IKK activity by an immunocomplex kinase assay. The results clearly
demonstrate that both NF-xB and IKK activities are markedly elevated in Al tumor tissues (Fig. 7).

These results support the notion that the IKK-NF-xB pathway may play an important role in
development of AI CaP. It was reported that 80% of TRAMP mice castrated at 12 weeks of age will develop
aggressive Al CaP at 24 weeks of age. To determine the effect of IKKB ablation on development of
androgen-independent prostate cancer (Al CaP) in TRAMP mice, cohorts of 20 male mice of each genotype
(IkkﬂF #1PB-CRE4-TRAMP and lkkﬁc "FITRAMP) are being prepared and will be castrated at 12 weeks of age
and sacrificed at 24 weeks of age. Size, weight and histology of the prostate tissue and of primary and
metastatic CaPs will be measured and recorded. Prostate tissues, primary and metastatic CaP will be
collected for primary cell culture, histological and biochemical analyses.

While we have been breeding the mice described above, we have cultured primary mouse CaP cells
isolated from IkkﬁF F/TRAMP mice, which contain two “floxed” Ikkp alleles that can be deleted by
expression of CRE-recombinase. These cells are mixtures of tumor stroma cells and epithelial cancer cells.
Cells were infected with CRE-adenovirus to delete both Ikkf alleles in both cell types or infected with GFP-
adenovirus as a control. IKKp deletion efficiency was examined by Western blotting. Ikkf-deleted cells and
non-deleted cells were transplanted into the flank of male Ragl'/ " mice. Two months later mice were
sacrificed and tumor weights were measured. Some of the mice were castrated one month after
transplantation, and two months after castration mice were sacrificed and tumor weights were measured. We
found that 7kkf deletion in tumor cells decreased tumor growth after castration (Fig. 8).

The stroma and extracellular matrix are essential for functional and morphological differentiation of
the prostatic epithelium. It is also postulated that the prostate stroma may plays an important role in CaP
development, as we found that the ratio between the stroma and epithelial cancer cells was increased in
castrated TRAMP prostate tumors (Fig. 9). We found that both IKK and NF-«xB activities were increased in
castrated CaP (Fig. 10), and 7kkf deletion in tumor tissue cells (both stroma and epithelial cancer cells)
decreased tumor growth after castration. Analysis of the role of IKKP either in prostate epithelial cancer cells
or stromal components in Al CaP development will provide us with important information as to the cell-type
specificity of IKKp function. We also separated epithelial cancer cells and tumor stromal cells from CaP
insolated from IkkB™"/TRAMP mice. IKKB was deleted by infection with CRE-adenovirus in either stromal
cells or in cancer cells. Equal number of epithelial cancer cells and stromal cells of different genotypes will
be mixed in different combinations (Ikkf™" stroma+ Ikkf” CaP; Ikkf” stroma + Ikk™" CaP; etc). To
examine the tumor development, equal numbers of cell combinations will be implanted under the renal
capsule of male SCID mice (5 mice for each cell combination). One month later, mice will be castrated, two
months later, mice will be sacrificed, and the size and weight of each tumor will be measured and recorded.
Tumor tissues will be collected and analyzed. These experiments are ongoing.
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Reportable Outcomes and Results

Table 17 Incidence of metastasis at death of WT/TRAMP
and IKKocA A'/TRAMP mice

PLA(%) Kidney+nodes (30) Liver (%) Lung (%)
WI'TRAMP (n=23) 2087  10(43) 4{(17) 5121)

IKKaAA/TRAMP (n=22) 9{41) 4(18) 0 (0} 0 {0}
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Fig. 5
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Figure 8

Deletion of IKKB in primary mouse tumor tissue cells inhibits
tumor growth when host Ragl-/- mice are castrated
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Figure 9

Pathology of prostate adenocarcinoma in castrated TRAMP mice
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Figure 10
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Conclusions

In summary, results obtained during the past project year suggest that both IKKo and IKKB may play
an important role in development and progression of CaP. Clearly, a more thorough examination of the role
of the two IKK subunits in CaP development and progression is needed, especially during the transition of
CaP from an AD to an Al state. These are functions being examined during the current project year. Most
interesting is the finding of maspin upregulation in CaP from Ikko/““/TRAMP mice. If maspin will be
verified to be a tumor and metastases suppressor in this model as well as in human CaP, our work provides a
clear outline for the development of new therapeutic approach to prostrate cancer.
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